

TENDER DOCUMENT (Includes both Technical & Financial bid documents)

Tender No-MDU/SOPD/TENDER/20/3 Dated: 24.12.2020

Name of Works: Supply of Departmental Laboratory Equipments for Departments

Issued To:

M/s	 			
	 			•••••
Ph/Mb No	 •	• • • • • • • • • • • • • • • • • • • •	••••	

Registrar i/c Madhabdev University

Table of Contents:

- 1. Tender Notification
- 2. Eligibility criteria
- 3. Terms and Conditions
- 4. Instruction for submission of Tenders
- 5. Earnest money Deposit
- 6. Bid Evaluation Criteria
- 7. Declaration

PART-A (Technical Bid) PART-B (Financial Bid)

MADHABDEV UNIVERSITY

Narayanpur, PO: Dikrong, Lakhimpur, Assam, Pin-784164 website: madhabdevuniversity.ac.in Email: <u>universitymadhabdev@gmail.com</u>

Tender Notification

Sealed quotations are invited affixing court fees stamp of Rs. 8.25 (Rupees Eight and twenty five paisa only) are invited from reputed firms/suppliers under SOPD for Supply of Departmental Laboratory Equipments. Visit University website **www.madhabdevuniversity.ac.in** for details

Particulars	Details
Nature of work	Supply of Departmental Laboratory Equipments
Details of Contact Persons for	Dr. Sarat Hazarika
Clarification/quarries	Registrar i/c
	Madhabdev University
	Narayanpur, Lakhimpur, Assam
	Mobile No-9954202020
Mode of Tendering	1. Details Terms and Conditions can be
	obtained /downloaded from the University
	website www.madhabdevuniversity.ac.in.
	Hard copy can be obtained from College
	Office during the office hours
	2. Tenders have to be submitted in the
	University during the office hours
	3. The bidders have to submit the sealed
	tenders by affixing non refundable Court
	fee stamps of Rs. 8.25 (Eight rupees and
	twenty five paisa only)
Cost of Tender documents	Rs.1000/-
No. of Covers	1.Technical Bid Annexure I
	2. Financial Bid Annexure III
Items included in Price Schedule (Annexure-II)	Supply of Departmental Laboratory Equipments
Token Earnest Money Deposited (EMD)	Token Earnest Money Deposited (EMD)
(Refundable)	(Refundable) 2%
Items included in Price Schedule (Annexure-II)	24.12.2020
Date of Publishing Tender	24.12.2020
Website for obtaining / Downloading Tender	www.madhabdevuniversity.ac.in.
Documents Etc	04.10.0000
Starting date and time of Bid submission	24.12.2020
Closing date and time of Bid submission	Up to 14.00 hours of 02.01.2021
Opening date and time of Technical Bid and Financial Bid	04.01.2021 at 11:00 hours
Address where Tenders are to be Submitted	Registrar i/c Madhabdey University Narayanpur
	Lakhimpur, Assam
Venue for opening Technical and Financial Bid	Office of the Registrar, Madhabdev University.
	Narayanpur, Lakhimpur, Assam

1. ELIGIBILITY:

- 1. The Vendors should have the experience of supply of laboratory equipments/Computers/ Sports Equipments to colleges/universities, and should have the experience of supply of any one of the above item to any institutions at least last three years.
- 2. Application for tender must include attested certificate copies of valid GST, Income Tax, Professional Tax, Trade License, Pan Card and credential for works done.
- 3. No quoted price above the cost of work mentioned will be accepted.
- 4. No extra cost will be borne by the college.
- 5. The rate should be quoted both in figures as well as in words.
- 6. No extension of time will be allowed.
- 7. Payment will be made in favour of the selected bidder as per Govt guidelines on successful completion of the works and observation of necessary formalities as the authority deems fit from time to time as per Govt norms.
- 8. Since the entire work will be financed from SOPD, payment will be made as per Govt guideline
- 9. The successful bidder has to start of work within five days from the date of issue of work order.
- 10. Acceptance of the lowest tender is not obligatory and the undersigned reserves the right to accept or reject any or all the tenders without assigning any reason.
- 11. The eligible Bidders have to face the Purchase Committee in order to negotiate and know the details of the proposed supply work.
- 12. Tender papers have to be collected from office of the undersigned/downloaded from website within stipulated dates as mentioned below on showing necessary documents as mentioned and payment of non-refundable tender paper fees in the form of DD in favour of The Registrar i/c, Madhabdev University payable at Narayanpur, Lakhimpur, Assam
- 13. Token earnest money at the rate of 2% percent of total amount has to be deposited in the form of DD in favour of Registrar i/c, Madhabdev University payable at Narayanpur, Lakhimpur.
- 14. Eligible bidders may be present at the time of opening of financial bid.
- 15. The firms/suppliers are requested to submit copies of the following documents along with the Technical Bid, failing which their Bids shall be rejected and shall not be further considered:
 - a) Copy of Earnest Money Deposit (EMD)
 - b) Copy of PAN/GIR card, GST registration certificate
 - c) Copy of work experience of similar work during last three years
 - d) Original Tender document duly signed with seal of the farm on each page in token of acceptance of the terms and conditions of the tender.
- 16. Schedule
 - (a) Date of issuing tender : 24.12.2020
 - (b) Last date of submission of sealed tender : Up to 14.00 hours of 02.01.2021
 - Tentative Date & time of opening tender: (i) Technical bid: 04.01.2021 at 11:00 hours

(ii) Financial bid: 04.01.2021 at 14:00 hours

Note : In case the said date/s, happen to be a holiday for any reason, the activity will be held on the immediate next working day at the same time & place unless otherwise notified through suitable media to all concerned. Selection of the agency will be at the sole discretion of the competent authority of the Madhabdev University who reserves its right to accept or reject any or all the proposals without assigning any reasons. The tender documents for the above work can be obtained from the Office of the Registrar, Madhabdev University, Narayanpur, District - Lakhimpur, or can also be downloaded from **www.madhabdevuniversity.ac.in**

Sd/- Dr. Sarat Hazarika Registrar i/c Madhabdev University

2. TERMS AND CONDITIONS:

- 1. The list of equipments are to be submitted in hard and soft copies (in excel format) mentioning Sl.No, Name, Prices and offered discounts against each items. Bidders must submit on prescribed Annexures only.
- 2. The contract is to commence from the date of award of contract to the firm and shall continue for the period of six months, unless it is curtailed or terminated by Madhabdev University owing to deficiency of service or supply of substandard quality of materials.
- 3. Submission of OEM authorization is must for every product of Laboratory equipment, Computers and Sports equipment.
- 4. The contract shall automatically expire after six months from commencements of the contract unless extended further by the mutual consent of contracting firm and Madhabdev University.
- 5. The contract may be extended on the same terms and conditions or with some additions/ deletions/ modifications and on satisfactory performance, for a further period of three months with mutual consent.
- 6. The contracting firm shall not be allowed to transfer, assign, pledge or sub-contracts rights and liabilities under this contract to any other company/ firm/ agency etc.
- 7. The contracting firm will be bound by the details furnished by the firm to Madhabdev University, while submitting the tender or at subsequent stage. In case, any of such documents furnished by the firm is found to be false at any stage, it would be deemed to be a breach of terms of contract making the firm liable for legal action besides termination of contract.
- 8. Financial bids of only those firms that are technically qualified shall be evaluated.
- 9. Madhabdev University reserves the right to terminate the contract during initial period after giving a week's notice to the firm.
- 10. All expenses for sending the items supplied to Madhabdev University, Narayanpur, District Lakhimpur, Pin 784164, Assam should be borne by the firm.
- 11. The rates quoted shall remain same during the rate contract period and no request for any increase in the rates shall be entertained during the period of the contract
- 12. The owner / supplier/ firm should be available on his/ her own direct telephone (office as well as residence) and also on mobile phone so that he/ she may be contacted immediately in emergency cases.
- 13. Before award of contract, all original documents will be checked by the authority of Madhabdev University and at that time attested photo copies are required to be furnished.
- 14. Madhabdev University shall not be responsible for any financial loss or other injuries to any person deployed by the contracting firm in the course of their performing the duties to Madhabdev University in connection with the supply of items.
- 15. In case of breach of contract by the vendor, Madhabdev University shall have the authority to cancel/ terminate the contract, besides forfeiting the Security Deposits.
- 16. It may specifically be mentioned whether quotation is strictly as per tender specifications/ conditions. Deviation in any form will not be accepted.
- 17. Madhabdev University reserves the right to accept or reject any bid or cancel the tender proceeding without assigning any reason whatsoever. Further Madhabdev University reserve the right to purchase or not to purchase any item listed in the price schedules.
- 18. The contract shall be subject to Lakhimpur Jurisdiction. This document and the contract or job award letter issued as a result of the tender process shall be interpreted in terms of Indian loss.
- 19. All disputes arising out of this contract shall be settled amicably by Madhabdev University and the contractor. In the event of failure to reach amicable settlement, the change shall be settled by an Arbitrator appointed by Madhabdev University as per the provisions contained in Arbitration and Conciliations Act 1956.
- 20. The terms and conditions of set by the University will be followed and implemented strictly.
- 21. The terms and conditions of Public Financial Management System (PFMS) will be followed in case of all financial transaction issues if applicable.

- 22. The successful Bidder (s) must sign an agreement with the Authority of the Madhabdev University regarding the contract and supply of materials as well.
- 23. The Contractor will be responsible for supply/installation/refilling/maintenance of all such /chemicals/items/equipments/machineries, etc., used in various facilities of the university

3. INSTRUCTIONS FOR SUBMISSION OF TENDERS:

- The Contractors are required to submit two separate Bids i.e. Technical and Financial as per prescribed proforma. The two bids should be submitted in two separately sealed envelopes superscribed 'TECHNICAL BID FOR SUPPLYING LABORATORY EQUIPMENTS IN MADHABDEV UNIVERSITY' and "FINANCIAL BID FOR SUPPLYING LABORATORY EQUIPMENTS MADHABDEV UNIVERSITY". Both sealed envelopes should be put in a third sealed envelope superscribed 'TENDER FOR SUPPLYING LABORATORY EQUIPMENTS IN MADHABDEV UNIVERSITY, NARAYANPUR, LABORATORY EQUIPMENTS IN MADHABDEV UNIVERSITY, NARAYANPUR, LAKHIMPUR,PIN 784164 ASSAM'.
- 2. The financial bid of only those Firms who qualify in technical bid evaluation by the concerned committee shall be opened. The financial bids of all those Contractors who have failed to qualify in the technical bid will not be opened under any circumstances.
- 3. The declaration in the prescribed proforma should be enclosed with the Technical Bid.
- 4. The Technical Bid should be accompanied by an Earnest Money Deposit (EMD) as notified elsewhere in the document in the form of DD/Bankers' Cheque for Earnest Money Deposit drawn on/ issued by any nationalized Bank drawn in favour of 'Registrar i/c, Madhabdev University' payable at Narayanpur, Lakhimpur, Assam
- 5. The Bidders can submit the tender either by post or by submitting in the box provided in the college in the following address-

To The Registrar i/c Madhabdev University Narayanpur, PO: Dikrong, Lakhimpur Pin-784164, Assam

- 6. The earnest money shall be refunded to all the unsuccessful Contractors, without any interest after finalization of the contract. EMD shall be refunded to the successful Contractor on receipt of performance security deposit. No interest is payable on the EMD to either the successful Contractor or the unsuccessful Contractor. Exemption from payment of EMD is applicable as per the existing law if accompanied by the relevant orders/instructions issued by the appropriate authorities.
- 7. All entries in the tender from should be legible and filled clearly. Any overwriting or cutting which is unavoidable shall be signed by the authorized signatory. Any alterations without authentication will be treated as a 'NIL' entry.
- 8. The Contractor may quote for all or any facilities. However, tender in respect of each facility should be complete in all respects failing which the bid shall be considered non-responsive.
- 9. Tender incomplete in any form will be rejected outright. Conditional tenders will also be rejected outright.
- 10. The closing date and time for receipt of tenders will be as detailed elsewhere in this tender document.
- 11. The technical bid shall be opened at a date & time as specified elsewhere in this tender document in presence of the authorized representatives of the Contractor, who wish to be present at that time. All the technical bids will be scrutinized, relevant documents checked for their authenticity and the Contractor whose technical tenders are accepted will participate in the financial bids on date & time as stipulated elsewhere in this tender document.
- 12. In case the successful bidder declines the offer of contract, for whatsoever reasons(s), his EMD will be forfeited.
- 13. The Contractor shall enter into a formal contract with the College within three days from the date of receipt of intimation of their selection. They shall further get prior approval of the draft copy of the agreement from the college.

- 14. Each page of the tender document should be signed and stamped by authorized representative of the contractor as a token of acceptance of the terms and conditions laid down by the college.
- 15. The competent authority of college reserves the right to withdraw/relax any of the terms and conditions mentioned above, under such circumstances the Contractor will be given adequate time to take the changes into account.
- 16. The competent authority of the college reserves it's right to reject all or any tender in whole, or in part or cancel the entire tender process, without assigning any reason thereof.

4. EARNEST MONEY DEPOSITED:

Technical Bid must be accompanied by DD/Bankers' Cheque for Earnest Money Deposit drawn on any Nationalized Bank in favour of The Registrar i/c, Madhabdev University. EMD shall be valid for a maximum period of 90 days from the closing date (original) of the tender. Quotation submitted without EMD shall be summarily rejected.

The DD/Bankers' Cheque in physical form duly sealed in envelop superscribed with "DD towards EMD and Tender Document cost for the tender No.....for supplying LABORATORY EQUIPMENTS IN MADHABDEV UNIVERSITY" shall be dispatched/ submitted at the OFFICE OF THE REGISTRAR, Madhabdev University at the address mentioned below so as to reach on or before the stipulated date.

To The Registrar Madhabdev University Narayanpur, PO: Dikrong, Lakhimpur Pin-784164, Assam

5. **BID EVALUATION CRITERIA:**

- 1. In the first instance the Technical Bids shall be opened by the Authority of Madhabdev University in the presence of representative of Bidders, if available.
- 2. The date and time of the Technical Bids and Financial Bids is given for all.
- 3. The Bidders may depute their representatives for the opening of the Bids.
- 4. The Technical Bids will then be evaluated by the Madhabdev University internally.
- 5. Once the Technical Bids are accepted, the Financial Bids of the vendors (whose Technical Bids have been accepted) shall be opened.
- 6. If any vendors so desires, it may depute its representative for Financial Bid opening event.
- 7. The decision of the Registrar i/c, Madhabdev University shall be final and binding.
- 8. The terms and conditions of Govt of Assam will be followed and implemented.

DECLARATION

execute this tenders document.

I have carefully read and understood all the terms and conditions of the tender and hereby convey my acceptance of the same.

The information/documents furnished along with the above application are true and authentic to the best of my knowledge and belief. I/We/ am/are well aware of the fact that furnishing of any false information/fabricated document would lead to rejection of my tender at any stage, besides liabilities towards prosecution under appropriate law.

Date:

Place:

Signature of authorized person

Full Name:

(Company's Seal)

N.B.: The above declaration, duly signed and sealed by the authorized signatory of the company should be enclosed with Technical tender

ANNEXURE-I

PART-A: TECHNICAL BID

TENDER DOCUMENT

Name of Work: <u>Supply of Laboratory Equipments to Madhabdev University</u> Issued to:

M/S		 		
Dh/Mh No	•••••	 	••••••	

Registrar i/c Madhabdev University

Brief description of the firm

1. Sl. No.	:
2. Name of the Firms	:
3. Name of owner/Partner/Directors	:
4. Full particulars of office	:
(a) Address	:
(b) Telephone No.	:
(c) Fax No.	:
(d) E-mail ID	:
5. Full particulars of the bankers of the firm	
(a) Name of the Bank and Branch	:
(b) Account type	:
(c) Account No.	:
(d) IFSC	:
6. Registration details : (Self attested copes of a	all Certificates/Licenses/Permits/Registrations etc.
should be enclosed failing which the applicat	tion is liable to be rejected outright)
a. PAN/GIR No.	:
b. GST Registration No	:
c. Service tax registration No.	:
d. EPF registration No.	:
e. ESI registration No.	:
f. Labour License issued under the Contrac	t Labour Act., 1970 :
7. Details of Earnest Money Deposited	
a. Amount	:
b. DD No. and Date	:
c. Drawn on bank	:
d. Valid up	:
The above format may be used to provide rec	quisite details.
Additional information, if any.	

Date : Place : Signature of authorized person Full Name : (Company's Seal

List of Laboratory Equipments For Madhabdev University

Sl. No.	Name of the items	Brand/Types
1	Herbarium Cabinet	
2	Aquaguard (Water Purifiers)	Kent
3	Compound Microscope	OLYMPUS
4	Binocular Stereo Zoom Microscope	
5	Oil Immersion Microscope	OLYMPUS
6	Simple Microscope	10x & 20x
7	Digital weighing machine	100 g capacity
8	Digital weighing machine	1 kg capacity
9	Chromatography Chamber	
10	Soil water Analysis kit	
11	Micro-Centrifuge Tube	1.5 ml
12	Autoclave	300x500 (40 lit)
13	Electrophoresis Equipments	
14	Muffle Furnace	100x100x225
15	Auxanometer	
16	Farmer Potometer	
17	Ganong's Potometer	
18	Respirometer	
19	Auto Conductivity Meter	
20	Calorimeter photoelectric	DIGITAL RH 133
21	Hot Air Oven	300x300x300 (28 lit)
22	Centrifuge	6 tubes x 15 ml
23	Rotary Microtome	Spencer type
24	Inoculation Chamber	900x600
25	Spectrophotometer	WPA \$800
26	Digital pH meter	RH 134
27	Digital thermometer	
28	Digital TDS meter	HANNA
29	Secchi Disk	
20	Fossil Specimens	Different types of plant
30		IOSSII
	Genetics & Molecular Models	DNA,
21		RNA,CHROMOSOMES
51	Wilmet's Dathler	, PROTEINS, LIPIDS
32	winnot's Bubbler	of photosynthesis
32	Comoro Lucido	Driam type
33	Transpiration/Absorption Apparetus	Corming Class
35	Ocular & Vernier Scale	For Camara Lucida
36	Water Bath	8 lit conscity
30	Rectariological Incubator	$\frac{6 \text{ In capacity}}{14 \text{ y} 14 \text{ y} 14}$
38	Water Distillation Unit	25 lit/hr capacity

Department of Botany

	Test Tube	5 ml capacity
39		10 ml capacity
40	Test Tube Holder	
41	Test Tube Strand	
	Dropping Bottle	100 ml capacity
42		50 ml capacity
43	Watch Glass	
44	Petri dish	
45	Collection Bottles	Different size
46	Beaker	50 ml capacity
		100 ml capacity
		500 ml capacity
		1 lit. capacity
47	Conical Flask	50 ml capacity
		100 ml capacity
		500 ml capacity
		1 lit. capacity
48	Slide	
49	Cover slide (Round & Rectangle)	
50	Measuring Cylinder	1 lit
		100 ml
		50 ml
51	Pipettes	2ml
		5ml
		10 ml
52	Funnels	Small
		Medium
		Large
53	Reagents	Fast Green powder
		Safranine powder
		Aniline blue
		Acetocarmine
54	Hydrochloric Acid	
55	Sulfuric Acid	
56	Formic Acid	
57	Ethyl Alcohol	
58	Methyl Alcohol	
59	Glycerine	
60	Lectophenol	
61	Cotton Blue	
62	UV Chamber	

Department of Chemistry

SL. NO.	APPARATUS & INSTRUMENTS
1	Thermostat
2	Colorimeter
3	pH meter
4	Reflectometer
5	Melting point determination apparatus
6	Apparatus for Column Chromatography Set
7	Desiccator
8	Centrifuge machine
9	TLC Chromatography Set
10	Calorimeter for determination of heat capacity
11	Suction pump
12	Conductometer
13	Apparatus for determination of Critical Solution temperature and
	Composition of Phenol-Water system
14	Apparatus for molar mass determination (Thiele's Tube)
15	Polarimeter to study the rate Constant of Sucrose etc.
16	Semi-micro test tube
17	Spot test plate
18	Distilled Water Set
19	Round bottle with cork
20	Sintered Glass Crucible
21	Fractional Distillation Set
22	Silica Crucible and Cover
23	Magnetic Stirrer
24	Sonicator
25	Water Bath
26	Shaking Water Bath
27	Muffle Furnace
28	Vacuum Pump
29	Oil Bath
30	Condenser
31	Micro Pipette (10-100 MicroL, 100-1000 MicroL
32	Separating Funnel
33	Rotor Evaporator
34	FT-IR
35	Uv-Visible Spectrometer
36	Volumetric Flask (250,500,1000 ml)
37	Ubbelohde Viscometer
38	Burette
39	Pipette

Department of Zoology

SL. NO.	APPARATUS & INSTRUMENTS
1	UV-Visible spectrophotometer
2	Kymograph
3	Accessories for kymograph
4	Blood cell counter (8 keys)
5	Haemocytometer (complete with German chamber)
6	Vernier Calliper
7	Digital thermometer
8	Pocket thermometer
9	Burette clamp (double)
10	Spirit lamp (Brass)
11	Paraffin embedding bath
12	All Glass Double Distillation Unit
13	Distillation Appartus Power Supply (DAPS)
14	Fluorescence microscope
15	Rectangular centrifuge machine (digital)
16	Dessicator Vacuum (300 mm)
17	Motorless magnetic stirrer
18	Magnetic stirrer bar 6x10mm
19	Magnetic stirrer bar 8x14mm
20	Magnetic stirrer bar 8x30mm
21	Magnetic stirrer bar 8x50mm
22	Magnetic retriever 30 cm
23	Hot plate rectangular (300x455 mm) Aluminium digital
24	Sterilizer pressure cooker (24 lit)
25	Water bath rectangular (double wall) RH166
26	Inculabor bacteriological (RH177) 18x18x18in
27	Rotary snaker (RH184)
28	Haemometer Karl Fischer Titzingsten
29	Karl Fischer Hithmeter
30	TDS & Conductivity mater
31	Laboratory automatic Mortor
32	Laboratory blender
33	Nikon d7200 wildlife photography camera
35	Glass slide cabinet
38	Histological slides
39	Endocrinological slides
40	Embryological slides
41	Cytological slides
42	Slides of parasitic protozoans and helminthes
43	Zoological museum specimen
44	Secchi disc
45	Plankton net
46	Burette (Class A) 25 ml
47	Burette (Class A) 50 ml
48	Cylinder Graduated, Stoppered, Class A (10 ml)
49	Cylinder Graduated, Stoppered, Class A (25 ml)
50	Cylinders Graduated, Stoppered, Class A (50 ml)

51	Cylinders Graduated, Pour out, Class A (100 ml)
52	Cylinders Graduated, Pour out, Class A (250 ml)
53	Cylinders Graduated, Pour out, Class A (500 ml)
54	Volumetric flask Class A 100 ml
55	Volumetric flask Class A 250 ml
56	Volumetric flask Class A 500 ml
57	Volumetric flask Class A 100 ml amber
58	Volumetric flask Class A 250 ml amber
59	Pipette 2 ml Class A
60	Pipette 5 ml Class A
61	Pipette 10 ml Class A
62	Pipette 25 ml Class A
63	Pipette 1 ml (volumetric) Class A
64	Pipette 2 ml (volumetric) Class A
65	Pipette 5 ml (volumetric) Class A
66	Pipette 10 ml (volumetric) Class A
67	Pipette 20 ml (volumetric) Class A
68	Buchner filter Grade 1, 200 ml
69	B.O.D. Bottle 300 ml
70	Reagent Bottle 100 ml
71	Reagent Bottle 250 ml
72	Reagent Bottle 500 ml

Department of Physics

Sl No.	Name of Instruments/ Practical	Specification
1	Vernier Calipers	Analog and Digital,
		Different constant
2	Screw Gauge	Analog and Digital,
		Different constant
3	Measurement of field strength B and its	complete set-up
	variation in a solenoid (determine dB/dx)	
4	To study Lissajous Figures CRO.	CRO
5	To determine Mechanical Equivalent of Heat,	complete set-up
	J, by Callender and Barne's constant flow	
	method.	
6	To determine the Coefficient of Thermal	complete set-up
	Conductivity of Cu by Searle"s Apparatus.	
7	To determine the Coefficient of Thermal	complete set-up
	Conductivity of Cu by Angstrom"s Method.	
8	To determine the Coefficient of Thermal	complete set-up
	Conductivity of a bad conductor by Lee and	
	Charlton"s disc method.	
9	To determine the Temperature Coefficient of	complete set-up
	Resistance by Platinum Resistance	
	Thermometer (PRT).	
10	To design a switch (NOT gate) using a	complete set-up
	transistor.	

11 To verify and design AND, OR, NOT and XOR gates using NAND gates. IC, breadboard, wire 12 To convert a Boolean expression into logic circuit and design it using logic gate ICs. IC, breadboard, wire 13 Half Adder, Full Adder and 4-bit binary Adder. IC, breadboard, wire 14 To design a combinational logic system for a specified Truth Table. IC, breadboard, wire 15 Half Subtractor, Full Subtractor, Adder- Subtractor using Full Adder I.C. IC 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. IT 17 To build JK Master-slave flip-flop using Flip- Flop ICs IT 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC IT 19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. complete set-up 20 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 21 To show the tunneling effect in tunnel diode using I-V characteristics. advanced optical bench with source 23 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up <tr< th=""><th>11 To X 12 To ci 13 H A 14 To sp</th><th>o verify and design AND, OR, NOT and OR gates using NAND gates. o convert a Boolean expression into logic recuit and design it using logic gate ICs. alf Adder, Full Adder and 4-bit binary</th><th>IC, breadboard, wire</th></tr<>	11 To X 12 To ci 13 H A 14 To sp	o verify and design AND, OR, NOT and OR gates using NAND gates. o convert a Boolean expression into logic recuit and design it using logic gate ICs. alf Adder, Full Adder and 4-bit binary	IC, breadboard, wire
12 To convert a Boolean expression into logic circuit and design it using logic gate ICs. IC, breadboard, wire 13 Half Adder, Full Adder and 4-bit binary Adder. IC, breadboard, wire 14 To design a combinational logic system for a specified Truth Table. IC, breadboard, wire 15 Half Subtractor, Full Subtractor, Adder- Subtractor using Full Adder I.C. IC 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. IT 17 To build JK Master-slave flip-flop using Flip- Flop ICs IT 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC IP 19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. complete set-up 20 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 21 To determine the value of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. complete set-up 24 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up 25 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. complete set-up 26 To d	12 To ci 13 H A 14 To sp	o convert a Boolean expression into logic recuit and design it using logic gate ICs. alf Adder, Full Adder and 4-bit binary	IC, breadboard, wire
12 To contret and design it using logic gate ICs. 13 Half Adder, Full Adder and 4-bit binary Adder. IC, breadboard, wire Adder. 14 To design a combinational logic system for a specified Truth Table. IC, breadboard, wire adder. 15 Half Subtractor, Full Subtractor, Adder- Subtractor using Full Adder IC. IO 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. IO 17 To build JK Master-slave flip-flop using Flip- Flop ICs IO 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC IO 19 To design an astable multivibrator of given specifications using 555 Timer. complete set-up 20 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 21 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To study the V-1 characteristics of a Zener diode and its use as voltage regulator. complete set-up 25 To study the frequency response of voltage gain of a RC-coupled transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up 27 To design a phase shift oscillator for given frequency using an op-amp. complete set-up 29 <t< th=""><th>12 ci ci 13 H A 14 Te sp</th><td>arcuit and design it using logic gate ICs. alf Adder, Full Adder and 4-bit binary</td><td>IC, breadboard, wire</td></t<>	12 ci ci 13 H A 14 Te sp	arcuit and design it using logic gate ICs. alf Adder, Full Adder and 4-bit binary	IC, breadboard, wire
13 Half Adder, Full Adder and 4-bit binary Adder. IC, breadboard, wire Adder. 14 To design a combinational logic system for a specified Truth Table. IC, breadboard, wire absorbed to build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 15 Half Subtractor, Full Subtractor, Adder- Subtractor using Full Adder I.C. I 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. I 17 To build JK Master-slave flip-flop using Flip- Flop ICs I 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop.IC I 19 To design an astable multivibrator of given specifications using 555 Timer. complete set-up 20 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. complete set-up 24 To determine the wavelength of laser source gain (mid-gain) using voltage regulator. complete set-up 25 To study the Frequency response of voltage gain of a RC-coupled transistor amplifier. complete set-up 27 To design a Dapase shift oscillator for given frequency us	13 H A 14 Te sp	alf Adder, Full Adder and 4-bit binary	IC broadboard wing
Adder. Adder. 14 To design a combinational logic system for a specified Truth Table. 15 Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip-Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop.IC 19 To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. 24 To determine the wavelength of laser source using diffraction of single/double slits. 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. 27 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. 28 To design a op-amp. 29 To design a phase shift oscilll	A 14 To sp	11	IC. DICAUDOAIU. WIFE
14 To design a combinational logic system for a specified Truth Table. 15 Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip-Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. complete set-up 24 To determine the wavelength of laser source diode and its use as voltage regulator. complete set-up 26 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 27 To study the frequency response of voltage gain (mid-gain) using voltage divider bias. complete set-up 27 To design a DE transistor amplifier. complete set-up 28 To	14 To sp	ader.	,, ,, ,,
specified Truth Table. 15 Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip-Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. 24 To determine the wavelength of laser source using diffraction of single/double slits. 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up gain (mid-gain) using voltage divider bias. 27 To study the frequency response of voltage gain (mid-gain) using voltage divider bias. complete set-up gain of a RC-coupled transistor amplifier. 28 To design a Des shift oscillator of given specifications using BJT. complete set-up specifications. 29 To design a hase shift oscillator of given specificatio	sp	o design a combinational logic system for a	
15 Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip-Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. complete set-up 24 To determine the wavelength of laser source using diffraction of single/double slits. complete set-up 25 To study the V-1 characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up 27 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. complete set-up 28 To design a digital to analog converter (DAC) complete set-up		pecified Truth Table.	
Subtractor using Full Adder I.C. 16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip- Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up determine the charge of an electron. 23 To show the tunneling effect in tunnel diode using I-V characteristics. complete set-up diode and its use as voltage regulator. 24 To determine the wavelength of laser source using diffraction of single/double slits. complete set-up diode and its use as voltage regulator. 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up frequency using an op-amp. 24 To design a Wien bridge oscillator for given frequency using an op-amp. complete set-up 25 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. complete set-up 28 To design a digital to analog converter (DAC) of given specifications. complete set-up	15 H	alf Subtractor, Full Subtractor, Adder-	
16 To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip- Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. 23 To show the tunneling effect in tunnel diode using I-V characteristics. 24 To determine the wavelength of laser source using diffraction of single/double slits. 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. 27 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. 28 To design a op-amp. 29 To design a op-amp. 29 To design a digital to analog converter (DAC) of given specifications. complete set-up 30 To design a digital to analog converter complete set-up 31 To	Su	ubtractor using Full Adder I.C.	
and JK) circuits using NAND gates. 17 To build JK Master-slave flip-flop using Flip- Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using I-V characteristics. complete set-up 24 To determine the wavelength of laser source using diffraction of single/double slits. bench with source 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain of a RC-coupled transistor amplifier. complete set-up 27 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. complete set-up 28 To design a op-amp. complete set-up complete set-up 29 To design a digital to analog converter (DAC) of given specifications. complete set-up complete set-up<	16 Te	o build Flip-Flop (RS, Clocked RS, D-type	
17 To build JK Master-slave flip-flop using Flip- Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. 23 To show the tunneling effect in tunnel diode using I-V characteristics. 24 To determine the wavelength of laser source using diffraction of single/double slits. 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. 27 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. 28 To design a Wien bridge oscillator for given frequency using an op-amp. 29 To design a digital to analog converter (DAC) of given specifications. 31 To study the analog to digital convertor (ADC) IC.	ar	nd JK) circuits using NAND gates.	
Flop ICs Flop ICs 18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. Advanced optical bench with source 24 To determine the wavelength of laser source diode and its use as voltage regulator. Advanced optical bench with source 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain of a RC-coupled transistor amplifier. complete set-up 28 To design a Wien bridge oscillator for given frequency using an op-amp. complete set-up 29 To design a phase shift oscillator of given specifications using BJT. complete set-up 30 To design a digital to analog converter (DAC) complete set-up of given specifications. complete set-up 31 To study the analog	17 Te	o build JK Master-slave flip-flop using Flip-	
18 To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop,IC 19 To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. 24 To determine the wavelength of laser source using diffraction of single/double slits. 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. 26 To design a CE transistor amplifier of a given gain of a RC-coupled transistor amplifier. 28 To design a Wien bridge oscillator for given frequency using an op-amp. 29 To design a digital to analog converter (DAC) of given specifications. 31 To study the analog to digital convertor (ADC) is of given specifications.	FI	lop ICs	
10 In the formula of the state of the	18 Te	o make a 4-bit Shift Register (serial and	
19 To build a 4-bit Counter using D-type/JK Flip- Flop ICs and study timing diagram. 20 To design an astable multivibrator of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. complete set-up 24 To determine the wavelength of laser source using diffraction of single/double slits. Advanced optical bench with source 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain of a RC-coupled transistor amplifier. complete set-up 28 To design a op-amp. complete set-up 29 To design a phase shift oscillator of given specifications using BJT. complete set-up 30 To design a digital to analog converter (DAC) of given specifications. complete set-up 31 To study the analog to digital convertor (ADC) IC. complete set-up		arallel) using D-type/JK Flip-Flop.IC	
13Flop ICs and study timing diagram.20To design an astable multivibrator of given specifications using 555 Timer.21To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.22To setup the Millikan oil drop apparatus and determine the charge of an electron.23To show the tunneling effect in tunnel diode using I-V characteristics.24To determine the wavelength of laser source using diffraction of single/double slits.25To study the V-I characteristics of a Zener diode and its use as voltage regulator.26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.28To design a phase shift oscillator for given frequency using an op-amp.29To design a digital to analog converter (DAC) of given specifications.31To study the analog to digital convertor (ADC) IC.	19 Te	o build a 4-bit Counter using D-type/IK Flip-	
20To design an astable multivibrator of given specifications using 555 Timer.21To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.complete set-up22To setup the Millikan oil drop apparatus and determine the charge of an electron.complete set-up23To show the tunneling effect in tunnel diode using I-V characteristics.complete set-up24To determine the wavelength of laser source using diffraction of single/double slits.Advanced optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	F	lon ICs and study timing diagram	
20 To design an associe matrixidation of given specifications using 555 Timer. 21 To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet. complete set-up 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using diffraction of single/double slits. complete set-up 24 To determine the wavelength of laser source using diffraction of single/double slits. Advanced optical bench with source 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up 27 To design a Wien bridge oscillator for given frequency using an op-amp. complete set-up 29 To design a digital to analog converter (DAC) of given specifications. complete set-up 30 To study the analog to digital convertor (ADC) IC. complete set-up 31 To study the analog to digital convertor complete set-up	20 T	o design an astable multivibrator of given	
21Specifications using 555 million21To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.complete set-up22To setup the Millikan oil drop apparatus and determine the charge of an electron.complete set-up23To show the tunneling effect in tunnel diode using I-V characteristics.complete set-up24To determine the wavelength of laser source using diffraction of single/double slits.Advanced optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To study the frequency response of voltage gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up29To design a phase shift oscillator for given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up		pecifications using 555 Timer	
21 To determine the value of complete set up focusing or (b) Bar magnet. 22 To setup the Millikan oil drop apparatus and determine the charge of an electron. complete set-up 23 To show the tunneling effect in tunnel diode using I-V characteristics. complete set-up 24 To determine the wavelength of laser source using diffraction of single/double slits. bench with source 25 To study the V-I characteristics of a Zener diode and its use as voltage regulator. complete set-up 26 To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. complete set-up 27 To study the frequency response of voltage gain of a RC-coupled transistor amplifier. complete set-up 28 To design a Wien bridge oscillator for given frequency using an op-amp. complete set-up 29 To design a digital to analog converter (DAC) of given specifications. complete set-up 31 To study the analog to digital convertor (ADC) IC. complete set-up	21 T	o determine the value of e/m by (a) Magnetic	complete set-up
22To setup the Millikan oil drop apparatus and determine the charge of an electron.complete set-up23To show the tunneling effect in tunnel diode using I-V characteristics.complete set-up24To determine the wavelength of laser source using diffraction of single/double slits.Advanced optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Diago an op-amp.complete set-up29To design a phase shift oscillator for given specifications using BJT.complete set-up30To study the analog to digital convertor (ADC) IC.complete set-up		ocusing or (b) Bar magnet	complete set up
22To setup the Winkan of drop appartus and determine the charge of an electron.complete set-up23To show the tunneling effect in tunnel diode using I-V characteristics.complete set-up24To determine the wavelength of laser source using diffraction of single/double slits.Advanced optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	22 T	o setup the Millikan oil drop apparatus and	complete set_up
23To show the tunneling effect in tunnel diode using I-V characteristics.complete set-up24To determine the wavelength of laser source using diffraction of single/double slits.Advanced optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	de	etermine the charge of an electron	complete set up
25To show the tunnening circer in tunner diodecomplete set-upusing I-V characteristics.Advanced optical24To determine the wavelength of laser sourceAdvanced opticalusing diffraction of single/double slits.bench with source25To study the V-I characteristics of a Zenercomplete set-updiode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a givencomplete set-upgain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltagecomplete set-upgain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	23 T	o show the tunneling effect in tunnel diode	complete set_up
24To determine the wavelength of laser source using diffraction of single/double slits.Advanced optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up		sing I-V characteristics	complete set-up
21To determine the waterengin of laser bounceFirst valueed optical bench with source25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	24 Te	o determine the wavelength of laser source	Advanced optical
25To study the V-I characteristics of a Zener diode and its use as voltage regulator.complete set-up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up		sing diffraction of single/double slits.	bench with source
diode and its use as voltage regulator.complete set up26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	25 Te	o study the V-I characteristics of a Zener	complete set-up
26To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.complete set-up27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	di	iode and its use as voltage regulator.	I I I I I I I I I I I I I I I I I I I
20DefinitionDefinitionDefinitiongain (mid-gain) using voltage divider bias.27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	26 Te	o design a CE transistor amplifier of a given	complete set-up
27To study the frequency response of voltage gain of a RC-coupled transistor amplifier.complete set-up28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	ga	ain (mid-gain) using voltage divider bias.	· · · · · · · · · · · · · · · · · · ·
28 To design a Wien bridge oscillator for given frequency using an op-amp. complete set-up 29 To design a phase shift oscillator of given specifications using BJT. complete set-up 30 To design a digital to analog converter (DAC) of given specifications. complete set-up 31 To study the analog to digital convertor (ADC) IC. complete set-up	27 T	To study the frequency response of voltage	complete set-up
28To design a Wien bridge oscillator for given frequency using an op-amp.complete set-up29To design a phase shift oscillator of given specifications using BJT.complete set-up30To design a digital to analog converter (DAC) of given specifications.complete set-up31To study the analog to digital convertor (ADC) IC.complete set-up	ga	ain of a RC-coupled transistor amplifier.	
29 To design a when onego openator for given frequency using an op-amp. complete set up 29 To design a phase shift oscillator of given specifications using BJT. complete set-up 30 To design a digital to analog converter (DAC) of given specifications. complete set-up 31 To study the analog to digital convertor (ADC) IC. complete set-up	28 T	o design a Wien bridge oscillator for given	complete set-up
29 To design a phase shift oscillator of given specifications using BJT. complete set-up 30 To design a digital to analog converter (DAC) of given specifications. complete set-up 31 To study the analog to digital convertor (ADC) IC. complete set-up	fr	equency using an op-amp.	
30 To design a digital to analog converter (DAC) of given specifications. complete set up 31 To study the analog to digital convertor (ADC) IC. complete set-up	29 T	o design a phase shift oscillator of given	complete set-up
30 To design a digital to analog converter (DAC) of given specifications. complete set-up 31 To study the analog to digital convertor (ADC) IC. complete set-up	sr	pecifications using BJT.	comprete set up
31 To study the analog to digital convertor (ADC) IC. complete set up	30 T	o design a digital to analog converter (DAC)	complete set-up
31 To study the analog to digital convertor (ADC) IC. complete set-up	of	f given specifications.	· · · · · · · · · · · · · · · · · · ·
(ADC) IC.	31 T	To study the analog to digital convertor	complete set-up
32 To design an inverting amplifier using On		ADC) IC.	comprete set up
	32 T	o design an inverting amplifier using Op-	
amp (741.351) for dc voltage of given gain	ar	mp (741.351) for dc voltage of given gain	
33 To design inverting amplifier using Op-amp	33 T	To design inverting amplifier using Op-amp	
(741,351) and study its frequency response	(7	741,351) and study its frequency response	
34 To design non-inverting amplifier using Op-	34 T	o design non-inverting amplifier using Op-	
	ar	mp (741,351) & study its frequency response	
amp (741,351) & study its frequency response	35 To	o study the zero-crossing detector and	
amp (741,351) & study its frequency response35To study the zero-crossing detector and	co	omparator	
amp (741,351) & study its frequency response35To study the zero-crossing detector and comparator	36 St	tudy of Zeeman effect: with external	complete set-up
amp (741,351) & study its frequency response35To study the zero-crossing detector and comparator36Study of Zeeman effect: with external		agnetic field; Hyperfine splitting	

37	Measurement of susceptibility of	complete set-up
	paramagnetic solution (Quinck's Tube	
	Method)	
38	To measure the Magnetic susceptibility of	complete set-up
	Solids.	
39	To measure the Dielectric Constant of a	complete set-up
	dielectric Materials with frequency	
40	To determine the complex dielectric constant	complete set-up
	and plasma frequency of metal using Surface	
	Plasmon resonance (SPR)	
41	To determine the refractive index of a	complete set-up
40	dielectric layer using SPR	1, ,
42	10 draw the BH curve of Fe using Solenoid &	complete set-up
12	To measure the resistivity of a semiconductor	four make & two make
43	(Co) with temperature by fourmedo method	rour probe & two probe
	(Ge) with temperature by fourprobe method (room temperature to 150 oC) and to	method, complete set-
	determine its hand gap	up
44	To analyze elliptically polarized Light by	complete set-up
	using a Babinet's compensator.	comprete set up
45	To study the reflection, refraction of	complete set-up
_	microwaves	r r r r
46	To verify the Stefan's law of radiation and to	complete set-up
	determine Stefan"s constant.	
47	To determine the Boltzmann constant using	complete set-up
	V-I characteristics of PN junction diode.	
48	Surface Plasmon study of metal nano particles	complete set-up
	by UV-Visible spectrophotometer.	
49	Prepare a disc of ceramic of a compound,	agate-morter, Chemical
	pressing and sintering, and study its XRD.	balance (0.01g),
		hydraulic press,
		C)
50	XRD Analyzing Software full proof/PDA	
51	To prepare composite of CNTs with other	
51	materials	
52	Experiments on Semiconductor Sources and	
	Detectors:	
53	Tool Box	
54	Drier	
55	Vacuum Cleaner	
56	Lens & prism cleaner	
57	Telescope	
58	Thermometer	Different least count
59	Fractional Resistance Boxes	
60	V-I characteristics of LED	
	b) Study the characteristic of solid state laser	
	c) Study the characteristics of LDR	
	a) Photovoltaic cell	
61	0.5 yolt do power supply	
62	U-3 volt ac power supply	
02	Thequency generior The to TOOKHE	

63	LCR meter (1MHz)				
64	Temperature controller				
65	Thermocouple (High temperature)				
66	Bread board				
67	Connection wire (single string)				
68	Potentiometer				
69	Digital Storage Oscilloscope (BW-300 MHZ),				
	4 Channels				
70	Origin Lab. Software, Latest Version				

Department of Education

Sl. No	Name of the apparatus
1	Tachistoscope
2	Rorschach Ink-blot card(10)
3	Punch board Maze ox
4	Mirror Drawing Apparatus (electrical)
5	Memory Drum
6	TAT picture card (30)
7	Alexander Pass Along Test
8	Koh's Block Design Test
9	Wechsler Adult Intelligence Test
10	Differential Aptitude Test(language usage, verbal reasoning, numerical ability)
11	Child Apperception Test
12	Extroversion Introversion Inventory(for HS, UG, PG students)
13	Sinha Anxiety Test
14	Achievement Motivation Scale
15	Adjustment Inventory

Annexure III

PART-B: FINANCIAL BIDS

Price Schedule: A (Supply of Laboratory Equipments)

Sl. No	Items Name/ Description	Brand with Model	Quantity	Unit Rate	Total Cost	Discount	Others (if any)	Actual Cost
1	List enclosed in Annexure II							

Signature of the authorised signatory with seal of the tendering firm/company/agency

Signature

Full name

Designation & Seal

Address:

Place:

Date: